Isoform-specific early trafficking of AMPA receptor flip and flop variants.
نویسندگان
چکیده
Flip and flop splice variants of AMPA receptor subunits are expressed in distinct but partly overlapping patterns and impart different desensitization kinetics to cognate receptor channels. In the absence of specific antibodies, isoform-specific differences in trafficking or localization of native flip and flop subunits remain uncharacterized. We report that in several transfected cell lines, transport of homomeric glutamate receptor (GluR)-D(flop) receptors is largely blocked at the endoplasmic reticulum (ER) exit, whereas GluR-D(flip) undergoes complex glycosylation and reaches the plasma membrane at >10x higher levels than GluR-D(flop), as determined by immunofluorescence, patch-clamp recordings and biochemical assays. The transport difference between flip and flop is independent of activity, is primarily determined by amino acid residue 780 (Leu in flop, Val in flip), and is manifested even in the secretion of the soluble ligand-binding domain, suggesting it is independent of oligomerization. Coexpression with stargazin or with the flip isoform rescues the surface expression of GluR-D(flop) near to the level exhibited by GluR-D(flip). Our results demonstrate that the extracellular flip/flop region, via interactions with ER luminal splice form-specific protein(s), plays a hitherto unappreciated and important role in AMPA-receptor trafficking.
منابع مشابه
Electrophysiological properties of AMPA receptors are differentially modulated depending on the associated member of the TARP family.
The family of AMPA receptors is encoded by four genes that are differentially spliced to result in the flip or flop versions of the four subunits GluR1 to GluR4. GluR2 is further modified at the so-called Q/R site by posttranscriptional RNA editing. Delivery of AMPA receptors to the plasma membrane and synaptic trafficking are controlled by transmembrane AMPA receptor regulatory proteins (TARPs...
متن کاملCell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants.
Glutamatergic transmission converging on calcium signaling plays a key role in dendritic differentiation. In early development, AMPA receptor (AMPAR) transcripts are extensively spliced and edited to generate subunits that differ in their biophysical properties. Whether these subunits have specific roles in the context of structural differentiation is unclear. We have investigated the role of n...
متن کاملMolecular determinants responsible for differences in desensitization kinetics of AMPA receptor splice variants.
Flip (i) and flop (o) alternatively spliced variants of the four glutamate AMPA receptor subunits (GluR1-4) are differentially expressed in the CNS and can display distinct rates of desensitization that contribute to the heterogeneity of native AMPA receptor-dependent synaptic responses. In the present study, we initially compared the kinetics of desensitization in response to fast application ...
متن کاملMultiple molecular determinants for allosteric modulation of alternatively spliced AMPA receptors.
Positive allosteric regulation of glutamate AMPA receptors involves conformational changes that can attenuate receptor desensitization and enhance ion flux through the channel pore. Many allosteric modulators (e.g., cyclothiazide and aniracetam) preferentially affect the flip (i) or flop (o) alternatively spliced isoform of AMPA receptors, implicating residues in the flip-flop domain as critica...
متن کاملSelective expression of heteromeric AMPA receptors driven by flip-flop differences.
Initial models of AMPA receptor assembly postulated the unrestricted stochastic association of individual subunits. The low Ca(2+) permeability and nonrectified current-voltage relationship of most native AMPA receptors were ascribed to dominant effects of the glutamate receptor 2 (GluR2) subunit. A recent model, however, proposes instead the preferred assembly of GluR1 and GluR2 subunits into ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 43 شماره
صفحات -
تاریخ انتشار 2006